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1. INTRODUCTION

Let R 2 be the usual two-dimensional plane with the Eucledean norm I . I.
By CONY we denote the set of all convex compact subsets of R 2. The
Hausdorff distance between two elements A p A 2 of CONY is given by
h(A 1 ,A 2 )=inf{t>O: A 1 cA 2 +tB,'A 2 cA 1 +tB}, where B=jPER 2

:

IPI~1} is the unit circle, C 1 +C2 ={P1 +P2 : P;EC i , i=I,2} is the
Minkowski sum of C p C2 from CONY and tB = {tP: P E B}. For every
integer n ~ 3 we denote by POLYn the set of all convex polygons with not
more than n vertices. The elements of POLYn will be called n-gons. The n
gon ,10 is said to be a best Hausdorff approximation in POLYn for the set
A E CONY if inf{h(A, ,1): ,1 E POLYn} = h(A, ,10)' The existence of at least
one best Hausdorff approximation for any A E CONY follows from the well
known Blaschke "selection theorem" asserting that every bounded sequence
of n-gons (n fixed) contains a subsequence converging in the Hausdorff
metric to some n-gon. In general, as examples like the unit circle or the unit
square show, the best approximation is not unique. Nevertheless the
"majority" of the elements of CONY have unique best approximation in any
POLYn' n ~ 3. The "majority" here means: with an exception of some first
Baire category subset of the locally compact metric space (CONV, h), all
convex compact subsets of R 2 have unique best approximation in POLYn for
every n ~ 3 (Theorem 3.5). To prove this we give (and use) a necessary
condition for ,1 E POLYn to be a best approximation for A E CONY. This
condition (Theorem 2.1) coincides with the classical alternating condition in
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the problem of uniform Cebyshev approximation by polynomials. But, in the
present situation, it is very far from being a sufficient condition.

If we impose on the best approximating n-gon the additional requirement
of having one of its sides perpendicular to a given vector, directed
"outward LI" (i.e., we consider another approximation problem), then the
alternating property completely determines a unique best approximation
(Theorem 4.12).

Some of the results presented here were announced in III J and reported at
the conference "Constructive Function Theory" held in June 1981, near
Varna, Bulgaria.

The way in which the sequence {rn(A)}n>3' where rn(A) = min{h(A, LI):
LI E POLYn } tends to 0 was studied by Toth [18J Popov [15J, and McClure
and Vitale [1 J. It is an open problem to find necessary and sufficient
conditions for a given n-gon LI to be a best Hausdorff approximation in
POLYn for some A E CONY. Also unknown is the answer to the following
question of Sendov and Popov: Is it true that among all elements of CONY
with perimeter 1, the equilateral (n + I)-gon (with the same perimeter) is the
worst one to be approximated by n-gons? There is a result of Ivanov [6 J

concerning approximation by inscribed n-gons which is in favour of the
"yes" answer of this question: among all (n + I)-gons with perimeter I the
equilateral (n + I)-gon is the worst to be approximated by inscribed n-gons.
The result from [12 J is also in support of the positive answer.

2. NOTATIONS AND PRELIMINARY RESULTS

Let us agree to denote the usual inner product of two points (vectors)
PI' P2E R 2 by (P ll P2). Set IPI = J(P, P). The function defined in R 2 by
the formula SA(P) = max{(P, X): X E A}, where A E CONY, is called a
support function of the set A. This function is positively homogeneous and is,
therefore, completely determined by its values at the points of the set S =
{e E R 2

: lei = I}. Then SA is convex and continuous. In this way a mapping
A H SA is defined from CONY into the space C(S) of all continuous
functions on S. Evidently SA,+A, = SA, + SA, and StA = tSA whenever t? 0 and
A,A ll A 2 E CONY. Since any point which does not belong to a given
compact convex subset of the plane can be strictly separated from it by a
hyperplane, we can prove that for any A ll A 2E CONY the relation AI cA 2
is equivalent to the assertion SA (e)";;; SA (e) for every e E S. Having in mind

I ,

all this and the fact that the supporting function of the unit circle B =
jP E R 2

: IPI ,,;;; I} is just the constant 1, the Hausdorff distance between two
sets A ll A 2 ECONV can be expressed in the following way: h(A ll A 2 )=
inf{t> 0: sA,(e)";;; sA,(e) + t, SA ,(e) ,,;;; SAI(e) + t for every e E S} = inf{t > 0:
ISA ,ee) - sA,(e)1 ,,;;; t for every e E S} = max{1 SA ,ee) - SA,(e)l: e E S}. Because
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of this fact the problem of approximating the elements of CONY by elements
of POLYn' n >3, with respect to the Hausdorff metric is equivalent to the
uniform approximation in C(S) of the support functions of elements of
CONY by the support functions of n-gons. In what follows we identify
CONY and POLYn with their images in C(S) under the above defined
mapping.

Let us accept the counterclockwise direction on S as positive. For
e l' e2 E S we denote by [e l , e2 ] the arc on S with end points eland e2 which
connects eland e2 "in the counterclockwise direction." Thus [e 2 , e I I=
S\(e l , e2 ). As with segments, by (e l , e2 ) we denote the "open" arc, i.e.,
leI' e2 J without the end points e l and e2 • It is clear what lei' e2 ) and (e l , e2 1

mean. When there is no danger of ambiguity the symbol (e l , e2 ] (or lei' e2 ),

(el' e2 ), (e l , e2 ]) will denote the length of the corresponding arc as well.
Now we need a more precise definition of the notion n-gon.

2.0. DEFINITION. The convex set .d c R 2 will be called a nondegenerated
k-gon, where k is an integer, k> 3, if there exist points Wd 7~ I c.d and
vectors lei }7= I c S such that

(1) 0 < (ei,e i+ l ) < 7[ (e k + 1 :=e l );

(2) ei E (e i - I , ei + I) (eo := ek );

(3) P j *' Pj when i *' j;

(4) s~(e)=(e'Pi) whenever eE [e i_l'ei].

The points Pi' i = 1,2,..., k are called vertices of .d. The segments Pi -I' Pi
will be called sides of .d and the vector ei , i = 1,2,... , k will be called a "side
direction" of the side Pi -1' Pi' The convex set .d is said to be an n-gon,
n >3, if it is a nondegenerated k-gon for some k, 3 ",; k ",; n.

It is easy to see (using separation argument) that every nondegenerated k
gon .d is the convex hull of its vertices. Of course, it may be proved that the
convex hull of any n points PI' P2 , ... , Pn' n >3, which are different and. do
not lie on one straight line, is an n-gon in the sense of the above definition.
Having this in mind, we can express the Hausdorff distance between the
convex set A and some (nondegenerated) n-gon in the following way:
h(A,.d) = lisA - s~ li ces) := max{lsA(e) - s~(e)l; e E S} = max{max{lsAe)
(e, Pi + 1)1: e E lei' ei + I]}; i = 1,2,..., n}. Therefore, in order to study the best
approximation of A by n-gons, we have to investigate the behaviour of the
function sAe)-(e'Pi+I) in [ei,ei+ I]. This behaviour is described in the
following result: Let ME R 2\A, A E CONY. Put d(M, A) = min{IX - MI:
X E A}. By the strict convexity of the Eucledian norm I . I there exists just
one point NEA such that IM-NI=d(M,A). Put e*=(M-N)/d(M,A).
Clearly e* E S. Moreover sA(e*) = (e*, N) and d(M, A) = (e*, M) - sAe*)
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(later we will see that this condition completely determines e*). For the sake
of simplicity we assume from now on that A has interior: int A i= 0.

2.1. PROPOSITION. There exists a unique vector e' E (e*, -e*) such that

(a) sA(e')-(e',M)=d(M,A).

(b) When e runs from e* to e' in the positive direction the function
sAe) - (e, M) strictly increases from -d(M, A) (for e = e*) to d(M, A) (for
e = e').

(c) For e E (e', -e*], sA(e) - (e, M) > d(M, A).

Analogously, there exists a uniquely determined vector e" E (-e*, e*)
such that sA(e)-(e,M) strictly increases from -d(M,A) (for e=e*) to
d(M, A) (for e = e") when e runs in the negative directionfrom e* to e". For
e E [-e*, e"), sAe) - (e, M) > d(M, A).

To prove this we will use some elementary facts which are listed below.

2.2. LEMMA. Let P i= 0 be a point from R Z and let 0 < [e I' ezl < 11,

where e i E S, i = 1,2. If (e i , P) ~ 0, i = 1,2, then at least one of these two
inequalities is strict and, for every e E (e l , ez), (e, P) < O.

2.3. LEMMA. Let the origin 0 ofR z not belong to A E CONY and let,for
some e l , ez E S, 0 < (e l , ez) < 11, the support function of A satisfies sAe,) =
sAez~ = O. Then

(1) sA(e) >ofor all e E S\[e p ezl,

(2) sA(e) < 0 for all e E (e p ez).

Although the meaning of Lemma 2.2 is obvious, we give here a formal
proof. It illustrates the elementary technics used in the sequel.

Proof (1) It is enough to prove the inequality for all e from (-e I ' e I)
and from (ez, -ez). Denote for this purpose by Qi' i = 1, 2, some points in A
for which (ei, Qi) = sAei) = O. Then 0 = sAe l ) = (el , Ql) ~ (e l , Qz) and
0= sAe2) = (e 2, Q2) ~ (e2, QI)' Therefore 0 = (e l , QI) and 0 ~ (e 2, QI)' By
Lemma 2.2 (e, QI) < 0 for every e E (e p e2l. Therefore (e, QI) > 0 for each
e from (-el' e l ). Then, for e E (-el' e l ), sA(e) ~ (e, QI) > O. Analogously,
from (e 2,Q2)=O, (el'Qz)~O and Lemma 2.2 it follows that s1(e)~

(e, Q2) > 0 for every e E (e z, -e2); (1) is proved. To prove (2) we show first
that sAe) i= 0 for every e from the arc (e l , ez). Indeed, if sAe') = 0 for some
e' E (e l , e2 ), then by the proof of (1) (applied for (e l , e')) we would get
sA(eZ) > 0 which is a contradiction. Since sA(e) is a continuous function the
same argument shows that sA·) must have one and the same sign on (e l , ez).
On the other hand, by the fact that 0 does not belong to the convex set A,
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there must exist some eo E S for which sA(eO) < 0 (otherwise, sAe) ~ 0 for
all e E S and this implies 0 E A). By (1) we see that eo has to belong to
(el' e z). Lemma 2.3 is proved.

Proposition 2.1 will follow from the next fact.

2.4. LEMMA. Let A, M, N, e*, and d(M, A) be as defined just before
Proposition 2.1. For every real number d, Idj ~d(M,A),

has just one solution e in the arc [e*, -e* I.
Proof For brevity set do := d(M, A) and SA(') = s(·). Since A has

interior points see) + s(-e) > 0 for every e E S. The existence of a solution
to (*) follows from the continuity of the function s(·) - (" M) and the ine
qualities

s(e*) - (e*, M) = (e*, N - M) = -do,

s(-e*) - (-e*, M) = s(-e*) + (e*, M)

= s(-e*) + s(e*) + do> do.

To prove the uniqueness of the solution we consider three cases:
(a) d=-do' (b) -do <d~O, (c) 0 <d~do'

(a) We take some solution to Eq. (*), i.e., s(eo)-(eo,M)=d=-do'
and show that eo = e*. Indeed, 1M - NI = do = (eo, M) - s(eo) ~
(eo, M - N) ~ 1M - NI. Having in mind that e* = (M - N)/IM - NI, we get
from here (eo, e*) = 1. As both vectors eo, e* belong to S this implies
eo = e*.

(b) Let -do < d ~ 0 and suppose see) - (e, M) = d for some e = e l and
e = ez, e\ * ez, leI' ezl c (e*, -e*). Consider the set A + (-d)B - M, where
B = {X E R z: IXI ~ I}. This set does not contain the origin 0 of R z
(otherwise, M would belong to A + (-d) B which, in turn, implies do =
d(M, A) ~ -d < do). The support function of this set is s(e) - d - (e, M) and
we have s(ej) - (ep M) - d = 0, i = 1,2. Since e* E S\[e l , e2 l we obtain
from Lemma 2.3 the contradiction 0 < s(e*) - d - (e*, M) = -do - d < O.

(c) We can introduce a coordinate system in R Z in such a way that M is
the origin (0,0) and e* is the vector (1,0). Let there be two vectors e l * ez'
lei' ezl c (e*, -e*) such that s(eJ = d, i = 1,2. Denote by Qj = (Xi' YJ,
i = 1,2, two points in A for which s(eJ = (e p Qi)' i = 1,2. Set e(t) = (cos t,
sin t), where t is a real number. Evidently e* = e(O) and -e* = e(n). The
vectors ei , i = 1,2, can be represented as e j = e(tJ = (cos t i , sin tJ, where
0< t l < t z < n. From d = s(e\) = (e\, Q\) = XI cos t 1 + YI sin t l we find Yl =
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(d - XI cos t\)/sin t l . On the other hand, we have d = s(e2) = (e2, Q2) ~
(e2,QI) = Xlcost2 + Ylsint2 = XI cost2 + sin tid-xI cos tl)/sin t) =
(l/sint\)(dsint2 - XI sin(t2-t))). Therefore d(sint)-sint2)~-x)

sin(t2- t l )· Since -do = s(e*) ~ (e*, QI) = XI we get -x) ~ do ~ d > o.
Therefore sin t l - sin t2- sin(t2 - t l ) ~ O. But this inequality leads to a con
tradiction:

o~ sin t l - sin t2- sin(t2- t l)

= 2 sin(t l - t2)/2 cos(t l + t2)/2 - 2 sin(t2 - t l )/2 cos(t2- t))/2

= -(2 sin(t2- tl)/2)«cos(t] + t2)/2) + (cos(t2- t l )/2)

= -4 sin(t2- t l)/2 cos t2/2 cos ttl2 < O.

Proof of Proposition 2.1. By Lemma 2.4 it follows that the continuous
function see) - (e, M) takes in [e*, e'] all values between -do and do only
once. Therefore it is strictly increasing when e runs from e* to e' in the
positive direction. By the same lemma the values this function takes in
(e', -e*] must be bigger than do' The situation, where e runs from e* to e"
in the negative direction on S, is analogous.

2.5. COROLLARY. d(M,A) = maxl(e,M) - see): eE [e",e']} = max
llsAe) - (e,M)j: eE [e",e']}, sAe) - (e,M) > d(M,A) for eE (e', e").
There exists just one e* E S for which (e*, M) - s(e*) = d(M, A).

We need further an operation which plays an important role in our
considerations. To each pair e", e' E S, 0 < (e", e') < n and A E CONY we
assign a point M=M(A;e",e'), a number do=do(A;e",e')~O and a
vector e* = e*(A; e", e') E (e", e') so that

(i) sAe") - (e", M) = do'

(ii) sA(e') - (e', M) = do'

(iii) (e*, M) - sA(e*) = d(M,A) = do,

(iv) maxllsAe)-(e,M)I: eE [e",e'lf=do'

Consider the lines L'=IXER 2: sA(e') = (e,X)} and L"={XER 2:
sA(e") = (e", X)}. Since 0 < (e", e') < n there exists only one intersection
point £1, i.e., (£1,e')=sAe'), (£1, e") = sAe") (see Fig. 1). There are two
possibilities: (a) £1 E A, (b) £1 E A. In case (a) we put do = 0, M = £1 and
take e* arbitrarily in (e", e'). All requirements are fulfilled because of the
following simple fact:

2.6. LEMMA. Let A E CONY and see) be its support function. Let ei E S,
i = 1,2, and 0 < (e l , e2) < n. If for some MEA s(eJ = (ei' M), i = 1,2,
then,for every e E (e l , e2), see) = (e, M) and see) > (e, X)for X E A, X*- M.
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Proof Take some e3 E (e l , e2) and let N E A be a point for which
(e 3, N) = s(e3). Then (ei , N - M) <,0 i = 1,2. If N *- M, by Lemma 2.2 it
follows that (e, N - M) < 0 for e E (el' e2 ). On the other hand, (e 3, N) ~
(e 3 , M) and therefore 0> (e 3 , N - M) ~ 0, which is a contradiction.

(b) MEA. Then d(M, A) > O. Consider the bisector line L = {X E R 2:
(e' - e", X - M) = O} passing through M and intersecting the set A (Fig. 1)
in the segment [P', PIll. When a point P on L moves from M towards P' the
function d(P, A) decreases from d(M, A) > 0 to 0 = d(P', A). At the same
time the function f(P) = sAe') - (e', P) = (e', M) - (e', P) = (e", M) 
(e", P) = sA(e") - (e", P) increases from 0 = f(M) to f(P') > O. Hence, on
the line L, there exists just one point M between M and P' such thatf(M) =
d(M, A). This point M and do := d(M, A) satisfy (i) and (ii). Proposition 2.1
and Corollary 2.5 imply that (iii) and (iv) are also fulfilled.

The next result reveals one important extremal property of this
construction. It shows that in the arc [e", e'l the function (e, M) approx
imates sAe) better than any other function of the type (e, P).

2.7. PROPOSITION. Let A E CONY, P E R 2 and e I , e2 E S, 0 <
(e.,e2 )<n. Set di=sA(e;)-(e;.P), i= 1,2, and d3=max{(e,P)~sAe):

e E [el' e21}· Iffor some pair of unit vectors e", e', 0 < Ie", e' I < n, we have

(v) [e", e'l c leI' e2 l,



228 PETAR S. KENDEROV

(vi) do:=do(A;e",e')~max{d;: i=I,2,3}, then do=d l =d2 =d3

and P=M(A;e",e"). Moreover, if do>O, then (in addition) e"=e l ,

e' =e2 •

Proof Let us first consider the case when do = O. That is, the point M =
M(A; elf, e') satisfying the conditions (e", M) = SA (e"), (e', M) = sAe')
belongs to A. In this case M lies on L' and L". Since d3 ~ -di , i = 1,2, we
have

Hence d; = 0, i = 1,2,3. In other words, sAe;) = (e p P), i = 1,2, and
(e,P)::;;;'sA(e) for eE(el'e2 ). We prove next that PEA. Suppose the
contrary. Then 0 E A - P. The support function of this set is sA(e) - (e, P).
Since sAe;) - (e p P) = 0 we can apply Lemma 2.3. Thus, for e E (e J, e2), we
have the contradiction 0> sAe) - (e, P) ~ O.

Once we know that PEA, we get from Lemma 2.6 and (v) that P = M.
Let us now consider the case do> O. Again set M:= M(A; elf, e'). By

Proposition 2.1(c) we know that sA(e) - (e, M) > do for e E S\[e", e' 1=
(e',e"). Since [e",e'] c [e J,e2 ] we have

(vii) sAe;) - (e;, M) ~ do ~ d; = sAe;) - (e p P) i = 1,2,

(viii) (e;, P - M) ~ 0 i = 1,2.

Since 0 < (e l , e2) <n we get from here that (e, P - M) ~ 0 for each
e E (el' e2). In particular, for e* E [elf, e'] c [e l , e2 l we have (e*, P) ~
(e*, M). Then

(ix) do = (e*, M)-sAe*)::;;;' (e*, P)-sA(e*)::;;;' d3 ::;;;' do. Thus do = dJ •

Condition (ix) implies also that everywhere in (vii), (viii), and (ix) we have
equalities. This is possible only if do = d J= d2 , M = P and eJ= elf, e2 = e'.

2.8. COROLLARY. If not all of the numbers dl' d2 , d3 from
Proposition 2.7 are equal, then do < max{dJ, d2 , dJ }.

2.9. DEFINITION. Let Ll be a nondegenerated k-gon with vertices
Ml' M 2 ,... , M k and side directions el' e2 , ... , ek • Then Ll is said to be alter
nating for A E CONY if the Hausdorff distance h(A, Ll) between A and Ll
satisfies the requirements:

(a) h(A, Ll) = sAe;) - s~(e;), i = 1,2,..., k;

(b) there exists ei'E(e;_J,e;), i=1,2,...,k (eO:=e k ) such that
h(A, Ll) = so(en - sAen, i = 1,2,..., k. The points (vectors) e;, el, i =
1,2,..., k will be called "alternating points" of the pair (A, Ll).
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3.0. COROLLARY. If the nondegenerated k-gon .1 with vertices
PI' P2 , ... , Pk is alternating for the convex set A, then d(Pi, A) = h(A, .1), i =
1, 2,... , k, i.e., the vertices of .1 are at the same distance from A.

Proof This follows immediately from Corollary 2.5 and Definition 2.9
(alternating k-hon).

3.1. THEOREM. Let A E CONY have interior points, let n> 3, and let .1
be a best Hausdorff approximation for A in POLY II' Then .1 is alternating
for A.

Proof Let k<.n and .1 = (PI' P2 ,· .. ,Pk ) has side directions el'e2 , ...,ek •

Let .1 be a best approximation in POLY II for A E CONY. Put d:= h(A, .1).
It is enough to prove that d=sAei)-(ei,P)=max{(e,Pi)-sAe):
e E [ei_1' ed} for each i = 1,2,... , k. Suppose, for example, that at least one
of the three numbers d l = sAel) - (el' P2 ), d2 = sA(e2) - (e 2 , P2 ), d3 = max
{(e, P2) - s(e): e E [e l , e2 ]} is strictly less than d. Then we will construct a
kl-gon (k l <. k) .1' with side directions e;, e~, ... , e~ such that h(A, .1') <. d

I

and max{!sA,(e)-sA(e)!: eE [e;,e~]} <d. The same argument with .1'
instead of .1 will bring us to another k 2-gon, k 2 <. k I' .1" such that
h(A,L1")<'d and max{lsA,,(e)-s4(e)!: eEle;',e~lUle~',enf<d.

Proceeding in this way, after a finite number of steps we arrive at some n
gon which approximates A better than .1, a contradiction.

Consider the points M!+I :=M(A;ei,ei+I), i= 1, 2,... , k (e k +1 :=e l ,

M; :=M~+I)' where ei are the side directions of .1, and take .1' to be the
convex hull of {M; }7~ I' We will show first that all points M;, i = 1,2,... , k
are vertices of .1'. Those of the points M; which do not belong to A are
necessarily different, because the corresponding vectors et+ I = e*(A; ei' ei t I)
lie in different arcs (e i , ei + I)' If two points M;, M; lie in A, they may
coincide. But the fact M; = M; has some consequences. Suppose for
simplicity that i < j and consider the case (e i + I' ei) < n (the other case
(ei + I' eJ < n is treated similarly). From Lemma 2.6 we see that sj(e) =
(e, M) for e E (e j , ej+ I)' where M = M; = M;. As is easily seen from the
construction of M;, we have now M; = M;+ 1= ... = M; = M(A; ei, ei +I)'

Identifying (if necessary) the coinciding points M; and introducing new
indices for M; and ei we may assume that M;, i = 1,2,... , k l , k l <. k, are
different points and that the vectors et+ 1= e*(A; ei' e j + I)' i = 1,2,... , k l ,

belong to [ei' e j + 1 J. Since A has interior points the length of the arc {e E S:
see) = (e, M)}, where MEA is any point in A, is less than n. This means the
above identification may reduce the number of points at most to k I = 3. In
general k l ;;;:, 3.
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3.2. LEMMA. For ii=j (et,Mi) > (et, Mi)·

Proof To prove this we use the following inequalities: (et, M;) - sAe;*)
= d(M;, A) ~(a) -d(M;, A) ~(/3) (et, M;) - sAe;*) which, in the case
d(M; , A) > 0, d(M;, A) > 0 are direct corollaries of Proposition 2.1 because
et E lej, ej+1]' But (a) and (fJ) also hold true for the case when one or both
of the numbers d(M;, A), d(M;, A) are equal to O. Evidently, the desired
inequality will be derived if at least one of (a) and (fJ) is a strict inequality.
This is the case when at least one of the numbers d(M;, A), d(M;, A) is
positive. To complete the proof we have to consider also the case d(M;, A) =

d(M;, A) = 0, i.e., M; EA, M; EA. From Lemma 2.6 we now get sAe;*) =
(et, M;) > (et, Mi). The lemma is proved.

It easily implies that no three points from the set {M; }f;" 1 belong to one
straight line. Thus L1' = co{M; }7~ 1 is a nondegenerated kj-gon with vertices
M;, i = 1,2,..., k p and side directions e;, i = 1,2,..., k p determined by the
conditions (e;, Mj) = (e;, M; + I)' e; E [ei*, et+ j]' Let us now turn back to
the proof of Theorem 3.1. It will be completed if we show that max
{1(M~,e)-sA(e)l: eE [e;,em <d=h(A,L1). This will be derived from the
assumption that at least one of the three numbers d1 , d2 , d3 is strictly less
than d. Since the arcs (e;, eD and (e l , e2 ) have nonempty intersection (both
contain en, four different situations may appear with respect to the common
disposition of !e"e2 ] and !e;,e~l:

(1) [e;, e~J c [e p e2 l,
(2) e; E [e p e2 ], e~ E [e p e2 l,

(3) e; E [e p e2 l, e~ E [e p e2 l,
(4) [e;,e~l::J [e p e2 ].

Since (see Corollary 2.8 and (iv» d> do(A; e1 , e2) = max{l(e, M~) - s4(e)l:
eE [e p e2 ]}, case (1) is not interesting. As will be seen from the argument
below, case (4) may be reduced to cases (2) and (3). Therefore (2) and (3)
are the important cases. Since these two cases are similar in nature, it is
enough to consider only case (2) which is depicted in Fig. 2. We have
(e2 , MD > (e2 , MD and therefore (Lemma 2.2) (e p MD > (e, MD for every
e E (e 2 , e~). Now since e~ E [e2 , e3 ] we have, for e E (e 2 , eD, sAe) - (e, MD
< SA (e) - (e, M;) ~ do(A; e2 , e3) ~ d.

On the other hand, Proposition 2.1(c) asserts that 0 ~ do(A; e p e2 ) ~

sAe) - (ML e) whenever e E [e2 , e~J, i.e., max{l(e, M~) - sA(e)j: e E
[e 2 , e~]} < d. Together with do(A; e p e2) < d this completes the proof.

3.3. PROPOSITION. Let L1 be a best approximation in POLY /I for
A E CONV\POLY /I' Then L1 is a nondegenerated n-gon.
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Proof The idea is very simple. Put e = h(A, .1) > 0 and suppose .1 =

(P l' P2 , ••• , Pm)' where m < n. Take a point Po belonging to the e
neighbourhood of the set A c p 2

• The new (m + 1)-gon .1' = (Po, PI"'" Pm)
belongs to POLYnand h(A, .1 ') = h(A, .1). Therefore .1' is a best approx
imation for A in POLYn. On the other hand Po may be chosen in such a way
that .1' be nonalternating for A. This contradicts Theorem 3.1 and completes
the proof.

Another application of the alternating property is the following result
which was also observed by N. Zivkov.

3.4. PROPOSITION. Let .1 be a best approximation for A in POLYn. Then
the set At = tA + (1 - t) .1, 0 < t < 1, has unique best approximation in
POLYn and this best approximation is .1.

Proof Denote by sl(e), so(e), and s((e) the support function of the sets A,
.1, and AI' respectively. Evidently, St = tS I + (I - t) So and therefore

(x) St - So = t(SI - so),

(xi) teSt - SI) = (I - t)(so - St).

From (x) we see that the alternation points of (A I' .1) are alternating for
(A, .1) and vice versa. Freom (xi) it also follows that the alternating points of
(AI' .1) are just those points where the function st(e) - sl(e) attains its
maximal (minimal) possible values.

Without loss of generality we may assume that II S I - SO II = 1. Then
II St - SO II = t and list - sill = I - t. We show first that .1 is a best approx
imation in POLYn for A(. Indeed, if there exists some .1' E POLYn with
Ilst-sd,lI<t we would get the contradiction Ilsl-sd,II~llsl-stll+

II s( - s,d < (1 - t) + t = 1. Next we show that .1 is the only best approx
imation of A {' To do this we consider one arbitrary best approximation .1' of
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At (i.e., liSt - sLl ' II = t) and show that L1' is a best approximation for A and
that the pair (A, L1') has the same alternating points as the pair (A, L1). This
will be enough to conclude that L1 = L1'. From 1~ Iisl - sLl,11 ~ Iisl - sill +
list - sLl,1I = (1 - t) + t = 1 we see that L1' is a best approximation for A.

Let eo be an alternating point for (A, L1 '). For example, I = sl(eO) - SLl ,(eo).
Then I=(sl(eO)-St(eo)) + (st(eO)-sLl,(eO)) ~ (I-t)+t=1. Hence
sl(eo) - st(eo) = 1 - t and st(eo) - SLl ,(eo) = t. This means eo is an alternating
point for the pair (A, AJ By (x) and (xi) eo will be alternating for the pair
(A, L1). Similarly, if -1 = sl(e*) - sLl,(e*) we have -1 = (sl(e*) - st(e*)) +
(st(e*) - sLl,(e*)) > -(1 - t) - t = -1. As above, again using (x) and (xi),
we see that e* is alternating for A and At and therefore for A and L1. By
Proposition 3.3 the set of alternating points of (A, L1') contains all alter
nating points of (A, L1).

We are now in a position to prove

3.5. THEOREM. The set of all those A E CONY which have unique best
approximation in POLYn for every n >3, contains a dense Gh subset of
(CONV, h). That is, the set {A E CONY: A has more than one best approx
imation in at least one POLYn' n> 3 f is of the first Baire category in
(CONV, h).

Proof One way to prove this assertion is given in Gruber and Kenderov
[5). In Kenderov [11) another way was outlined. Here we suggest an
argument which is based on Proposition 3.4.

Fix n = k and consider the metric projection 7rk : CONY --> POLY k

assigning to each A E CONY the set 7rk(A) of all best approximations for A
in POLYk' By the Blaschke selection theorem POLY k is an approximatively
compact subset of C(S). The result of I. Singer [16] asserts that the metric
projection 7rk: (CONV,h)--> (POLYk,h) is an upper semicontinuous set
valued map with compact images. According to a theorem of Fort [2] there
exists a dense Go subset W k of (CONV, h) at the elements of which 7rk is
lower semicontinuous, i.e., for every A E W k , c > 0, and L1 E 7r k (A) there
exists 13 > 0 such that for every A' E CONY, h(A,A') < 13, there exists
L1' E 7r k (A') for which h(L1,L1') < c. We will show now that every A E Wk

has unique best approximation in POLYk • Take such an A E Wk and
suppose there exist L1I'J 2 E7rk (A), J I *J 2 • Put c=-!h(J"J 2»O and
consider the set At = tA + (1 - t) L1 1 • According to Proposition 3.4 i7k(A) =
{L1 1 } for every t > O. As limt~O h(A t' A) = 0 this contradicts the lower
semicontinuity of 7rk at A, because h(L1 I , L1 2 ) > c. The theorem is proved
because n~3 Wk is again a dense Go subset of CONY.

3.6. Remark. This theorem goes along the line started in the papers of
Stechkin r17] and Garkavi 13, 41. Results about the uniqueness of the best
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approximations for "almost all" elements of the space are contained in the
papers by Konijagin [13,14], Zajicik [19], Zivkov [20,21] and Kenderov
17-10]. It does not seem that Theorem 3.5 is a corollary of the results from
these papers because neither C(S) (in the "sup" norm) is strictly convex
space, nor is the structure of the set POLY n simple (it is not a convex subset
of CONY).

4. BEST ApPROXIMATION WITH A FIXED SIDE DIRECTION

We discuss here another approximation problem in which the best approx
imation is obliged to have one of its side directions coinciding with a given
vector e E S. It turns out (under reasonable restrictions) that this problem
always has a solution and this solution is unique. It will also be shown that
for every A E CONY there are a lot of alternating n-gons, n> 3. A
necessary and sufficient condition will be given for some A E CONY to be
an n-gon.

First we need some constructions.

4.0. CONSTRUCTION. Let A E CONY. For e E S we set w(e) =
sA(e) + SA (-e) and recall that this is the "width of A in direction e." As
int A*, 0, w(e) > 0 for every e E S. To each e E S and a real number d.
0< d ~ 1w(e), we put into correspondence a point M = M(A; e, d) and e
vector e* = e*(A; e, d) such that

(1) d=d(M,A)=(e*,M)-sAe*),

(2) sAe) - (e, M) = d,

(3) e* E (e, -e).

First consider the line L = lX E R 2
: (X, e) = sA(e) - d}. Because of the

condition 0 < d ~ 1w(e), L intersects A and therefore will intersect the
interior of A + dB (this set is the d neighbourhood of A). Then L crosses the
boundary of A + dB at two points M. and M 2 which are different. Both M ,
and M 2 satisfy (2). Denote by er, i = 1,2, the unit vectors uniquely deter
mined by the condition d = d(M, A) = (e i*, M i) - SAe;*) (i.e., each of e~

and et satisfies (1)). Now we prove that each of the arcs (e, -e), (-e, e)
contains only one of the vectors er, i= 1,2. Using (1) and (2) it is not
difficult to see that er *' ±e i = 1,2. Indeed, suppose er = e. Then s4(e) =
sAe;*) = (er,Mi)-d = (e,M;)-d = sAe)-2d. As d>O this is a
contradiction. Analogously we disprove the relation er = -e: 0 < w(e)
sA(e) + sA(-e) = sA(e) + sA(e;*) = sA(e) + (er, M i) - d = sA(e) +
(-e, M i) - d = sA(e) - sA(e) = O.

Now we prove that each of the arcs (e, -e), (-e, e) contains only one of
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the vectors e;, i= 1,2. Consider (et,M2 -M1) = (et,M2 ) - (et,M 1) =
sAen + d - (et, M 1) ~ d - max{(e, M 1 ) - sA(e)): e E S} = d - d = O. As
et *- ±e we get from here (et, M 2 - M 1) > O.

Similarly we derive (e~, M 1 - M 2 ) > O. These inequalities imply that each
of the arcs contain only one of e;, i = 1,2. In what follows we will denote
by e* = e*(A; e, d) that vector e; which belongs to the arc (e, -e). The
corresponding point M j will be denoted by M = M(A; e, d). Evidently (I }-(3)
are satisfied. It is now clear that these three conditions completely determine
e* and M. Moreover, the above argument shows that (3) can be replaced by
the (formally less restrictive) condition

(3') e*E [e,-e].

4.1. LEMMA. The defined mappings (e, d) ---> M(A; e, d) and (e, d)--->
e*(A; e, d) are continuous at every point (eo, do), eo E S, do> O.

Proof The argument follows the scheme by means of which continuity
of an implicitely defined function is proved. Let e j ---> eo, d; ---> do' where
e; E S, 0 < d; ~ 1w(eJ, i = 0, 1,2,.... Set e; = e*(A; e j , dJ and M; =
M(A; e;, dJ i = 0, 1,2,.... Then

(lJ d;=d(MpA)= (e;,M;)-sA(e;*),

(2;) d; = sA(eJ - (e p M;),

(3J e; E (e;, -e;).

Since all M; belong to a bounded subset of R 2 there will exist a converging
subsequence. The situation with {en;;;>! c S is analogous. For simplicity we
assume that {M;}; tends to some M and {e;}; converges to some e* E S.
Taking limits in (1;}-(3;) we get

(I) do=d(M,A)=(e*,M)-sA(e*),

(2) do = sAeo) - (eo, M),

(3') e* E [eo, -eo]'

By the construction, these three conditions imply M = M o' e* = er
Taking Proposition 2.1 into account we see that, to every point MEA,

there correspond two vectors e*, e' determined by the conditions

(a) d(M,A)=sAe')-(e',M),

(b) d(M, A) = (e*, M) - sAe*),

(c) e' E (e*, -e*).

Proceeding like in the previous result we can prove that thus defined e* and
e' depend continuous on M. Hence the composition mapping assigning to
each pair (e, d), e E S, 0 < d ~ 1w(e) the vector e' (via the maps (e, d) f--->
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M He') is also continuous. We will denote e' by T(e, d). The next result is

now evident.

4.2. PROPOSITION. The mapping (e, d) H T(e, d) is continuous at every
point (e, d), where 0 < d ~ 1w(e).

Let us now calculate T(e, d) for d=1w(e). From sA-e)-(-e,M) =
sA-e) + (e, M) = sA-e) + sAe) - d = wee) - d = d we see that
T(e, 1w(e)) = -e, i.e., (e, T(e, 1w(e))) = n. If d < 1w(e), the same argument
gives SA (-e) - (-e, M) > d. Combined with Proposition 2.1 this leads to the
conclusions e* E (e, -e), e' E (e*, -e), i.e., e' = T(e, d) E (e, -e).

Further we need one more definition. For every e E S, positive integer k
and a real number d, 0 < d ~ 1w(e), we define inductively T'(e, d).
T I (e, d) = T(e, d) and TH

I (e, d) = T(T'(e, d), d). The correctness of this
definition is based on the fact that w(T'(e, d)) >2d whenever wee) >2d.

4.3. LEMMA. Let 0 < d ~ 1w(e). Then w(T(e, d)) >2d.

Proof If d = 1w(e), T(e, d) = -e, then the lemma follows from wee) =
we-e). Let us consider the case d < 1w(e). Since e' = T(e, d) E (e, -e), we
have -e' E [e, e']. By Proposition 2.1 d <sA-e') - (-e', M) = sA(-e') +
(e', M) = sA(-e') + sAe') - d = wee') - d. Lemma 4.3 is proved.

Evidently, the mapping T'(e, d) is continuous. The real-valued function
f'(e,d) defined inductively byf'(e,d) = (e, T(e,d)),fH'(e,d) =f'(e,d) +
f' (T'(e, d), d) = f'(e, d) + (T'(e, d), TH

I (e, d)) will be continuous. Clearly
f'(e, 1w(e)) = kn.

4.4. COROLLARY. Let e E S. In the interval (0, 1w(e) I f'(e, d) is strictly
increasing as a function of d.

Proof We want to prove that from 1w(e) > d , > d z > 0 it follows
f'(e, d l ) > f'(e, d z). This will be done by induction. A direct application of
Proposition 2.7 shows that the arc [e, T(e, d l)I is not contained in
fe, T(e, d z)]. Thus, for k = 1, the problem is settled. Suppose the assertion is
true for f'(e, d):f'(e, d t ) > f'(e, d2 ). We prove the same inequality for f'+ I.
There is sense to consider only the case when f'(e,d,)~fH'(e,dz)

(otherwise the required inequality follows from fH I(e, d , ) > f'(e, dl)). In
other words,fk(e, d 2 ) < f'(e, d l )~fH I(e, d 2). This corresponds to the case
when T'(e, d l ) E (Tk(e, d z), TH I(e, d z)] = (Tk(e, d z), T(T'(e, d z), d 2 )]. That
TH lee, d t ) does not belong to this arc is again a corollary of
Proposition 2.7.

For convenience we denote by f'(e, 0), limd~o f'(e, d) and by T(e, 0) such
a vector from S that fl(e, 0) = (e, T(e,O)). It is clear what T'(e,O) means.
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The function fk(e, 0) is a convenient tool to express the fact that a given set
A is an n-gon.

4.5. THEOREM. Let e E S and A E CONY, intA *0. The set A is a
nondegenerated n-gon with e among its side directions if and only if
r(e, 0) = 2n.

The proof will need several auxiliary results.

4.6. LEMMA. Let MEA and sA(e) = (e, M) for e E (eo, eb). Then

(1) eb E fe, T(e, 0)] for each e E [eo' eb I·

(2) sAe) = (e, M), whenever e E leo' T(eo' 0) I, and s,j(e) > (e, M) for
e E (T(eo, 0), -eo)'

(3) T(e, 0) = T(eo' O)for each e E leo, T(eo' 0)).

Proof (I) Take d> 0 and e E [eo, eb I. From Proposition 2.7 (with
e" := e, e' := T(e, d), e l := eo, and e2 := eb) we see that the arc (e, T(e, d))
cannot be contained in (eo, eb). Therefore eb E (e, T(e, d)) for every d> O.
Thus eb E fe, T(e, 0)].

(2) Take a sequence {dj Ij;;>! of positive real numbers, limj dj = O. Then
the sequence Ie; = T(eo' dj)Ij;;>_1 converges to T(eo' 0) and {Mj =
M(A; eo, dj)I contains a converging (to some point MER 2), subsequence.
Taking limits in d;=d(Mj,A)=s1(eO)-(eo,M;)=sA(ej)-(ej,M;), we
obtain MEA, sAeo) = (eo,M) and sAT(eo'O)) = (T(eo,O),M). By
Lemma 2.6 sAe) = (e, M) for every e E leo, T(eo' 0)1. From part (1) and 2.6
it is also seen that sAe)) * (el,M) for any e)E(T(eo,O),-eo)' Therefore
sAe1) > (e),M).

(3) By (1) it follows that T(eo'O)c Ie, T(e,O)]. Since (by the proof of
(2)) sAT(e, 0)) = (T(e, 0), M), from (2) we get T(e, 0) E leo, T(e(l' 0) I.

4.7. LEMMA. Let the vectors eo, e; E S, j = 1,2,3,..., and the positive
real numbers d;, j = 1, 2, 3,... , be such that the sequences {I eo' ej I }j? I •

{dj}j>l decrease to O. Suppose t:= lim supjP(ej , dj) > O. Then there exist
ME R 2 and eb E S such that

(1) (eo,eb)=t,

(2) sAe) = (e, M) whenever e E (eo, eb).

Proof Set e;=T(ej,dj) and Mj=M(A;ej , d). Then d;=d(M;,A) and
dj = sAej) - (ej , M) = sA(ej) - (e;, M). Without loss of generality we may
assume that {M;}j> p {ell j» and {fl (ej , d;) }j» are convergent sequences.
Taking limits we get d(M,A)=O, sA(eO) = (eo,M) and s,j(eb) = (eb,M),
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where M = lim; M;, e~ = lim e;. From the condition (e;, ej) = P (e;, dJ <n
we see that n): (eo' e~) = t >0.

It remains to apply Lemma 2.6 in order to complete the proof. However,
we must prove first that t =1= n. Here is one possible way to do this. Since A
contains a circle with radius ro > 0, w(e)): 2ro for every e E S. Therefore,
when °< do < r0' f I (eo, do) < n for each e E S. Since the function f I (-, do)
is continuous and S is compact u:= max{fl(e, do): e E Sf < n. When
d; < do,f'(e;, dJ < f'(e;, do) <u < n. Thus t = limJ'(e;, dJ <u < n.

4.8. COROLLARY. Let eo, e;, d; j = 1,2,..., be as in Lemma 4.7. Then
f'(eo, 0) = lim;p(eo, d;) = limjfl(ej , dJ

Proof From Proposition 2.7 we derive

leo' T(eo' dJ] cleo, e;1 U Ie;, T(ej , d;)! = leo' T(ep dJI·

Thereforefl(eo' O) < liminfjfl(e;,d;) < limsupjf'(ej,d;) =:t. It remains
to prove that t <f 1(eo, 0). If t = 0, there is nothing to prove since
f'(e,O)):O. If t>O, the inequality f'(eo,O)):t is a corollary of
Lemmas 4.6 and 4.7.

4.9. Corollary. Let e E S, A E CONY and e; = Ti(e, 0) i = 1,2,....
k-l. Thenfk(e, 0) =f'(e,O)+f'(e"O)+ ... +f'(ek_"O).

Proof Let k = 2. Take a decreasing sequence {d;f j ;? I of real numbers,
lim; dj = 0. Then f2(e, 0) = limj f2(e, dJ = limif' (e, dJ + f' (e;, dJ), where
e; = T(e, dJ We know that {ej}j;? I converges to e l = T(e, 0) in such a way
that [e l , ej ] decreases to 0. From Corollary 4.8 it follows that p(e, 0) =
fl(e, 0) + f'(e

"
0). Analogously we proceed when k): 3.

Let us now turn back to the proof of theorem (4.5). Let A be a
nondegenerated n-gon with side directions el,e2,... ,en_l,en' where e l =e.
By what was proved in Corollary 4.9 e; l I = T;(e;, 0), i = 1,2,... , n.
Thereforejn(e, 0) = (e l , e2) + (e 2 , e3 ) + ... + (ek, e,) = 2n.

Now let A be such a convex set that fn (e, 0) = 2n. It is not difficult to
understand that 0 < f'(e, 0) <p(e, 0) < ... < f"(e, 0) = 2n. Put e l = e, e2 =
T'(e, 0),... , ek = Tk-I(e, 0). Evidently el = T(ek, 0). By Lemma 4.7 for every
arc (e;, e;+ I) there is a point P; for which sAe) = (e, Pi) when e E Ie;, e;. II.
Therefore A is a nondegenerated n-gon.

4.10. THEOREM. Let the vector e E S and the set A E CONY, int A =1= 0
be such that fn(e, 0) <2n, where n): 3. Then, for each positive integer k,
3 <k <n, there exists just one nondegenerated k-gon L1 which is alternating
for A and has e among its side directions.
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Proof We consider two subcases

(a) F(e, 0) < 2n,

(b) F(e,0)=2n.

Let us consider case (a). If f*(e, d) = 2n for some d> 0, then it is easy to
realize that there exists an alternating k-gon .1 for A with side directions e,
T(e,d), T 2(e, d), ..., T*-I(e,d) and such that h(A,L1)=d. Conversely, if some
k-gon .1 is alternating for A and e is among its side directions, then
f*(e, d) = 2n, where d = h(A, .1). Therefore the proof will be completed with
the proof of the following fact:

4.11. LEMMA. Let F(e, 0) < 2n. Then for every integer k, 3';;;; k ,;;;; n,
there exists a unique number dk, 0 < dk < ~w(e),for whichf*(e, dk) = 2n.

Proof Let k = 3. From f3(e, 1w(e» = 3n and f3(e, 0)';;;; F(e, 0) < 2n it
follows that there exists d3, 0 < d3 < 1w(e). for which f3(e, d3) = 2n. This
number is uniquely determined by the monotonicity of f3(e, .). From
f4(e, d3) > f3(e. d3) = 2n andf4(e, 0) <"F(e. 0) < 2n we derive the existence
of some d4, 0 < d4 < d3, such that f4(e. d4) = 2n. In this way. step by step,
we determine the numbers d3, d4...., dn so that 0 < dn < dn_ I < ... < d 1 <
1w(e) and f*(e, d*) = 2n. Case (a) is completed.

(b) In this case, according to Theorem 4.5, A is an n-gon with e among
its side directions. This n-gon is alternating for itself. Since for k. 3';;;; k ,;;;;
n - l,fk(e, 0) <F(e. 0) = 2n the rest of the proof is contained in (a).

4.12. THEOREM. Let eES. A ECONV. intA*0, be such that
fn(e, 0) ,;;;; 2n. Among all n-gons having e as side direction the alternating n
gonfor A approximates A (in the Hausdorffmetric) in the best possible way.

Proof The case fn(e, 0) = 2n is not interesting. because A is an n-gon
with e among its side directions. Suppose fn(e. 0) < 2n and take some n-gon
.1 with side directions e p e2,· .. , en' eJ=e. Then d=h(A.L1»O. From
Proposition 2.7 we have that pee. d) ~ lei' ezl and that the inequality is
strict if T(e.d)*e2. Similarly, f2(e,d)~ le l .e2 l+ [e2,e3] and the
inequality is again strict if one of the conditions Ti(e, d) = ei + I' i = 1.2, is
violated. Repeating this argument we arrive at the inequality fn(e, d) ~
IeI' ez]+ ... + [en' e l ] = 2n which is strict if Ti(e, d) * ei+ J for some i =

1,2,.... n. If L1 is not alternating, thenfn(e. d) > 2n and there exists a number
d* < d for whichfn(e, d*) = 2n. The latter condition implies the existence of
some n-gon .1* which is alternating for A, has e among its side directions
and h(A, L1 *) = d* < d. The theorem is proved.
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